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Let (hbh2, h3) represent the points in the minimum 
repeat volume for Qx below the shaded plane in Fig. 
l(b). Then (h'1,h'2,ha) represents the points above the 
shaded plane; from equation (C.7) it is evident that 
when Qx is known in the points (hi,hE, ha) it is also 
known in the points (h'l,h'2,h'a). Note that instead of 
the shaded plane in Fig. l(b) any plane could be chosen 
containing a line which is parallel to the h3 axis and 
goes through the point [1 T 1"~ 

In Appendix I, Qx(hl, he, h3), ax(h2, hi, h3) and 
Qx(h3,hbh2) were derived, where (hbh2,h3) represents 
the points within the basic tetrahedron in Fig. l(a). 
Due to the symmetries of Qx (Sparks & Borie, 1966) 
we have 

Q z ( - h 2 , -  hi,h3) = -Qx(h2,hl,h3), (C.8) 

and from the same type of reasoning as above we get 

Qx[(½- h3), h2, (½-  hi)]--- - Qx(h3,h2,hl). 

The points (hbh2,h3), ( - h 2 , - h l , h 3 )  and [(1-h3),h2, 
(½-hl)l  together fill out the part of the minimum repeat 
volume for Qz below the shaded plane in Fig. 1 (b). 
[This can easily be checked by inserting the values for 
hl, h2,h3 of the basic tetrahedron in Fig. l(a)]. Thus, Qx 
is known in its whole minimum repeat volume. The 
same type of reasoning leads to the conclusion that 
also Rx and Suz are known in their minimum repeat 
volumes. 

We thank Professor J. E. Gragg, Jr for pointing out 
to us the additional symmetry for b.c.c, systems that 
allows this separation. 
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Dynamical Calculation of Electron Scattering by Plasmons in Aluminum 
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Plasmon diffuse scattering (PDS) is calculated for AI(111) systematics using the multi-slice approach to 
dynamical electron scattering. It is found that PDS contributes strongly to Kikuchi bands, and to the 
decrease in the mean absorption coefficient which occurs when energy filtering is removed. Thickness 
fringes are found, which are similar to those for Bragg beams except at low thickness. The different 
behaviour in this region is explained. The effect of the (111) Kikuchi band on the variation of the path 
length for plasmon excitation with crystal tilt is considered in detail. 

Introduction 

The excitation of plasmons in crystals by fast incident 
electrons has been considered theoretically by several 
authors. An account of this work has been given by 

* Present address: Aeronautical Research Laboratories, Box 
4331, G. P. O., Melbourne 3001, Australia. 

Pines (1964). However, dynamical interactions of the 
plasmon diffuse scattering (PDS) can be readily im- 
plied from experiments with the electron microscope, 
such as the PDS thickness fringes observed by Kamiya 
& Uyeda (1961). 

These thickness fringes have been predicted by Fuji- 
moto & Kainuma (1962, 1963), Fukuhara (1963), and 
Howie (1963), who treated the PDS as coherent. Hei- 
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den.reich (1963) treated the PDS as incoherent, attri- 
buting the fringes to plasmon excitation in pre- and 
post-excitation zones. The excitation of a well-defined 
plasmon cannot be localized except within the crystal 
boundaries, so that wave amplitudes rather than inten- 
sifies of the PDS should be summed. Thus PDS is as- 
sumed to be coherent throughout the present paper. 

Numerical calculations by the above authors have 
been restricted to the two beam approximation. A 
method is developed below to include the effects of 
weak elastic and inelastic beams on first-order PDS, 
when systematic Bragg beams are excited. This is based 
on the 'multi-slice' formulation of the wave optical ap- 
proach to dynamical scattering, as given by Cowley & 
Moodie (1957). The case of AI(111) systematics will be 
considered. 

Method of calculation 

(1) Bragg beams 
Bragg beams are calculated by using the iterative 

'slice' approach of Goodman & Moodie (1965). Ab- 
sorption is included by allowing the Fourier coeffi- 
cients, vn, of the crystal potential ~0(x) to become com- 
plex, so that for the centrosymmetrical crystal, 

vh = v~ + ivy.  

Here, ~ are the usual coefficients of the thermally 
smeared out potential, and are based on the atomic 
scattering factors given by Doyle & Turner (1968). The 
coefficients v~, are related to the absorption coefficients 
/~n by 

v~ = IZh/2a 

where tr = zce/2E for an incident electron of wavelength 
2 and energy E. The values used for v~, include contribu- 
tions from plasmon, phonon and single electron excita- 
tions, and have been calculated for AI(111) systematics, 
at the required accelerating voltages, as described pre- 
viously (Doyle 1970, hereafter referred to as I). Table 1 
lists the v~, for 50 kV electrons. 

Table 1. Calculated values of the absorbing potential 
vtn for (111) systematic reflexions of A1 at 50 kV 

(Units: volts 
v ~ 

v ~ v ~ ( s i n g l e  v ~ 

h (plasmon) (thermal) electron) (total) 
000 0.485 0.223 0.077 0.785 
111 0.198 0.019 0-217 
222 0.147 0.017 0.164 
333 0.096 0-014 0.110 
444 0.055 0.010 0.065 
555 0-027 0.007 0.034 
666 0.011 0.005 0.016 
777 0.002 0.003 0.005 
888 - 0.001 0.002 0"001 

The phase grating amplitudes Fl(h) are given by 
Fourier transforming the function exp [-ia~oe(x)], 
where ~0V(x) is the projected crystal potential over a 

slice of thickness Az. Goodman (private communica- 
tion) has shown that the elastic waves Fly(h) at the Nth  
layer of crystal are then given by 

Flv(h)= ~F~v-a(hl)P(ha)Fa(h-ha) . (1) 
h t  

For a crystal tilted at an angle p to the incident beam, 
the propagation function P(h) is 

P(h)=exp[+---aS-izr2Az h(h- H')] 

where H '  =2aft/2, and a is the spacing of the lattice 
planes. 

As stated in I, accurate numerical results for the 
Bragg beams from AI(111) systematics are obtained if 
13 beams and single fundamental unit cell layers are 
used. These are found to be adequate for plasmon dif- 
fuse scattering (PDS) as well, the approach to which 
will now be considered. 

(2) Plasmon scattered waves 
A method is described by which first order PDS on 

the systematic line can be calculated, and is then ex- 
tended to diffuse positions off this line. 

Since we will suppose there is no Umldapp process 
for the plasmon scattering, the additional diffuse wave 
AF~(h +p) produced in the direction (h +p)  in the Nth  
layer arises only from the Bragg beam in the direction 
h, and is given by 

AFg(h+p)=AAz(p)FN.,(h)P(h) . (2) 

AA~(P) is the amplitude for plasmon scattering through 
an angle 0 =p2/a, in the layer of thickness Az, and will 
be derived later in this section. 

The interaction of the PDS at later layers of the crys- 
tal is given by 

F~r(h +p)= ~ F~q(hl +p)P(hl +p)Fl(h-ha) . (3) 
hl  

The calculation proceeds by first storing the amplitudes 
and phases of the Bragg beams at all layers up to the 
maximum desired thickness. Then, for each required 
value of p, PDS is found by carrying out the iteration 
(3), adding the additional waves at each layer by using 
(2). In practice, the constant factor Aa,(p) is left out 
until the end of the calculation. It can be shown that 
the use of (2) and (3) expresses the phases of diffuse 
waves relative to that of the central Bragg beam. This 
is also the ease for the Bragg beams, so that the addi- 
tional PDS produced in a given layer has the correct 
phase relative to that produced in earlier layers. 

We can now calculate PDS along the systematic fine. 
However, it is desirable to find the diffuse intensity off 
this line as well, so that contour maps may be drawn, 
and the PDS can be integrated over the objective aper- 
ture. Examination of Fig. 1 shows that the PDS around 
the reflexion h,I~, can be written as 

p t 2 t D t Ih(p,x)=AA,(p)Ih(p COSX) • (4) 
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Equation (4) states essentially that the dynamical in- 
teractions in this systematics case depend only on the 
projection of the position in reciprocal space on the 
systematic line, and that the cross section for plasmon 
excitation depends only on the angle of scattering from 
the nearest Bragg beam. The function lg(p' cos ;/) is 
derived by using (2) and (3) as described above with 
p' cos z=p ,  remembering that the factor AA,(p) is 
omitted. The PDS within the objective aperture around 
the reflexion h is then given by 

I~' = lobie~tivo I~'(p',z)df2, 
¢aperture 

which can be rewritten as 

The value of pmax is related to the diameter of the ob- 
jective aperture, d, by 

pmax=ad/2f2 

where f is the focal length of the objective lens. Equa- 
tion (5) expresses the PDS as a probability, since the 
plane wave incident on the crystal is taken as unity. 

It now remains to derive an expression for the factor 
A,~,(p). To do this, we will follow an approach sug- 
gested by Howie (1963), who pointed out that his treat- 
ment of plasmon scattering could be carried through 
by dividing the range 0 < 0 < 0e, where 0c is the cut-off 
angle for PDS, into a large number of segments of 
width 60, throughout each of which the cross section 
can be taken as constant. 

The intensities in the various orders of plasmon loss 
follow a Poisson distribution, whether they are treated 
kinematically (Blackstock, Ritchie & Birkhoff, 1955) 
or dynamically (Howie, 1963). Therefore, Aa~(p) can 
be derived by reducing the dynamical calculation de- 
scribed above to a kinematical one. Kinematically, the 
elastic intensity after thickness Az is given by 

I~ln = exp ( -  Az/A) 

f 
/ 

/ 

~ \ (o< 

\ / N 

~ ' /  / / / \ \ \  ~ / /  

pmaxlo 

Fig. 1. The definition of p' and Z in the plane of reciprocal 
space perpendicular to the incident beam, illustrated for two 
beams only. The dashed line shows the cut-off angle 0e, 
which corresponds to pmax--0"49 at 50 kV. 

where A is the path length for plasmon excitation. The 
phase grating amplitudes are then replaced by 

Fl(h) =Oh,0 exp ( -Az /2A) .  

Again, supposing that momentum is conserved in the 
inelastic process, the change of wave-vector of the fast 
electron is equal and opposite to the wave-vector of the 
plasmon. Therefore, the phase term P(p) in (3) is can- 
celled by that introduced by the z component of the 
plasmon wave-vector. This resonance effect is con- 
sidered more closely in the following section. Then it 
follows, carrying through the iteration (3) and using (2) 
for the additional wave in each layer, that the kinematic 
amplitude for the first plasmon peak in a crystal of 
thickness N3Az is given by 

[ N3Az~. Vkin = N3A A z(p) exp ~ ~ ] 

The kinematic single loss intensity produced in the 
range 0 -+ 0 + ~0 is therefore 

Iao(1,N3Az)=N~A2a~(O) exp ( 
N3Az ) 21ro5o . (6) 

A / " 

Remembering that the Poisson distribution holds for 
both kinematic and dynamic theory, a second expres- 
sion for I,~o(1,N3Az) follows directly from the work of 
Howie (1963), and can be written as 

I,~o(1 ,z) =jc2(O )z2(1 - c2(0 )z2) J-1 (7) 

where 
~m____2 2 

C2(0)  : (2zch2 k )  IH0l • (8) 

Here, J is the total number of plasmon modes in the 
crystal, and j is the number in the range 0 ~ 0 + g0. It 
follows that 

j = 2rck20ciO Vc/z, 

where Vc is the volume of the crystal, and k=2zc/2. 
The matrix element In01 has been given by Ferrell 

(1957) as 
2neZAEG-I(O) 

IH012= kZ Vc . (9) 

In (9), AE is the plasmon energy, and G-I(O) is a func- 
tion which has been found graphically for A1 in I, using 
a method described by Ferrell (1957). Finally, from 
conservation of energy and momentum, 

m 1 
(hk) ~ - 2E(02 + 0~:) where 0E= AE/2E . (1 O) 

Inserting (8) (9) and (10) in (7), and taking the limit of 
large J, 
Iao(1,N3Az)= N3AzOeO3OG-a(O) N3--AA Z ) 

ao(O2+O~ ) exp ( --  . (11) 

Equating (6) and (11), Aaz(O) is found to be 

Or G-I(O) Az (12) 
ASz(0)= 2rcao(02+O~) • N3 . 
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When this expression is used in the dynamical calcula- 
tion, the total first loss intensity is proportional to z for 
low values of z, as is required to agree with the Poisson 
distribution law, and hence to conserve the total inten- 
sity. 

Accuracy of the calculation 

Contributions to PDS arise from several of the normal 
modes for plasmons. Howie (1963) argued that no ser- 
ious error is introduced by considering the excitation 
of only the mode for which the energy momentum rela- 
tions are exactly satisfied. This approximation is in- 
corporated in equation (12). 

By including a phase term exp (ikjzzN) on the PDS 
produced at a depth z~v in the crystal in the dynamical 
calculations, the contribution from a mode other than 
that with kjz=0 can be obtained. For small objective 
aperture sizes (corresponding to Pmax > 0"25), it is found 
that including contributions from several plasmon 
modes with small kjz alters the relative diffuse intensities 
around inner reflexions by only 1 to 2 %. This increases 
to about 8 % when the whole of the PDS is included 
(pmax~-- 0"5). 

Ferrell (1957) gave an expression for 0e, which can 
be written for A1 as 

Oe=O.74(Eo/E)I/z 

where E0 is the Fermi energy. To test the self-consist- 
ency of the calculation, absorption due to processes 
other than plasmon scattering is omitted, and the PDS 
is integrated out to 0e around each Bragg beam.* The 
total PDS is found to be up to 10 % lower than pre- 
dicted by the Poisson distribution, being least accurate 
for crystal thicknesses near the path length. This error 
may be due to the 'resonance effect' discussed above. 

Profile of plasmon diffuse scattering 

The profile of the first order PDS, Iek(p',x), calculated 
for N-beam systematics, around the two strong beams 
when the (111) reflexion of A1 is satisfied, is shown in 
Fig. 2(a). This is for a thickness of 910 A and for 50 kV 
electrons. The characteristic decrease of intensity be- 
tween the two strong beams, or equivalently, the (111) 
Kik-uchi band, is clearly visible. Howie (1963) showed 
that this experimentally observed phenomenon is 
caused by anomalous absorption, which in turn results 
from phonon and single electron excitations (Table 1). 

The asymmetry is shown clearly by scanning the 
PDS along a line in reciprocal space, such as the dashed 
line in Fig. 2(a). This scan is shown in Fig. 2(b). Since 
the effect relies on the different absorption occurring 
for different Bloch waves excited in the crystal, it 
should become more apparent with increasing thick- 
hess. By integrating the PDS inside the positions of the 

* Numerical integration is carried out to a consistency of 
1% throughout the present paper. The value of pmax corre- 
sponding to 0c at 50 kV is 0.49. 

(111) Kikuchi lines, and comparing this with the inte- 
grated PDS near the two strong beams but outside 

Outside v Inside Outside 

" -- ~" 

(a) 

/ 

/ 
(b) 

0"1 ~ Outside 
Inside 

IO00A 

(c) 

Fig. 2. The contour map for first order PDS, given by equation 
(4), around the two strong beams when the (111) reflexion 
is satisfied, is shown in (a). This is for 50 kV, and 910 A of 
AI(Ill) systematics, lhV(p',z) along the dashed line in (a) 
is shown in (b). The total first order PDS near the two 
strong beams 'inside' and 'outside' the (111) Kikuchi lines 
as illustrated in (a) is shown as a function of thickness in (c). 
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these lines, as illustrated in Fig. 2(a), the increase with 
thickness of the asymmetry in the distribution can be 
found, as shown in Fig. 2(c). The maximum first order 
PDS intensity occurs well below the theoretical path 
length (841 A) for plasmon excitation at this voltage, 
since absorption due to other inelastic processes is in- 
eluded for both Bragg beams and PDS. 

Since thickness fringes are still dominant at 1000 A 
of A1, the profile of the PDS is strongly dependent on 
thickness. Fig. 3 shows the contour map for the same 
case as Fig. 2(a), except that the thickness has been in- 
creased from 910 to 1000 A. The omission of the re- 
sonance effects mentioned in the previous section will 
preferentially decrease the PDS outside the (111) Ki- 
kuchi band for this two-beam tilt, because of the curva- 
ture of the Ewald sphere. This may be partly respon- 
sible for the rapid fall-off of the contours in these re- 
gions. Thus the asymmetry may be slightly greater than 
predicted here, though the effect on the integrated in- 
tensity of Fig. 2(c) is expected to be small. 

Thickness fringes for plasmon scattering 

The variation with thickness of the first order PDS in- 
tegrated over the objective aperture is shown for the 
(000) and (111) beams in Fig. 4(a) and (b) respectively, 
and is compared with that for the corresponding Bragg 
beams. These graphs are for AI(111) systematics with 
the (111) reflexion satisfied, and for 40 kV electrons. 
The value ofpmax used was 0.18, which corresponds to 
the objective aperture size used in the determination 
of absorption coefficients by Watanabe (1964). 

(a) Qualitative interpretation 
In general, the profiles of the thickness fringes are 

similar to those for the Bragg beams, except at low 
thickness. In the bright field [Fig. 4(a)], the first peak 
of the elastic intensity occurs at the edge of the crystal, 
whereas that for the PDS is shifted to a finite thickness. 
This is expected, since the excitation of plasmon losses 
with the electron in an 'advance excitation zone' as 
proposed by Heidenreich (1963) is not included in the 
present treatment. This shift causes the first fringe in 

v 

(00, 

16 

64 

10:!4 u. 

Fig.3. As for Fig. 2(a), except that the crystal thickness is 
1000 X. 

the bright field PDS to have half the usual periodicity 
and was also predicted by Fukuhara (1963). However, 
Watanabe (1964) has pointed out that the intensity of 
this fringe is experimentally far greater than was pre- 
dicted by Fukuhara, and this is in qualitative agree- 
ment with the present calculations. 

The higher order thickness fringes in the bright field 
have peak values shifted towards greater thickness rela- 
tive to those for the elastic beam, by art amount which 
decreases with increasing fringe number. This is be- 
cause PDS in bright field is generated from the central 
Bragg beam only, which can therefore contribute most 
strongly near its maxima. A similar argument explains 
the shift of the peaks in the PDS fringes in the dark 
field as well [Figure 4(b)]. For low thickness the PDS 
in dark field increases proportionally to z 3. This is be- 
cause PDS in this region at low thickness results prin- 
cipally from a permutation of an elastic scattering, 
which is proportional to z 2 for low z, and an inelastic 
scattering, which is proportional to z. This argument 
is valid for all beams with h#0 .  This z 3 appearance 
rapidly disappears, however, once significant intensity 
has been scattered to the elastic (111) reflexion. Note 
that the total PDS in the whole diffraction pattern in- 
creases proportionally to z for low z, as mentioned pre- 
viously, since the bright field is initially dominant. 

(b) Measurement of the mean absorption coefficient 
Watanabe (1964) has measured the mean absorption 

coefficient for A1 at 40 kV. He denoted the values found 
with and without energy filtering by p0 and [P0] respec- 
tively. It was found in I that the value of/.to calculated 
from simple physical models for the inelastic scattering 
processes involved agreed with the experimental value 
within 25 %. The bright field experiment was considered 
more suitable, since the dark field value would be in- 
creased by spherical aberration. The agreement for [P0] 
is considered in this section. 

From the N-beam systematic calculations of thermal 
diffuse scattering by Doyle (1969), it appears that this 
form of diffuse scattering will contribute very weakly 
to thickness fringes. If we also suppose that scattering 
by single electron excitations does not contribute sig- 
nificantly to thickness fringes, then the lower values 
measured for ~0] compared with those for P0 should be 
explicable in terms of PDS. 

Table 2. Comparison of theory and experiment for 
the mean absorption coefficient at 40 kV 

Theoretical value=2"35 x 10 -3 ~-1 
Units: x 10 -3/~-1. 

Calculated* Experiment 
Dark field /to 2.21 3-24, 3.20 

[/~j] 1.59, (1.67) 2.58, 2.2 
Bright field /~0 2.20 2.98, 3.02 

[/10] 1-50, (1.80) 1-82, 1.78, 1.54 

* The first calculated value shown for [/~0] was found from 
the first two maxima in the thickness fringes. The value in 
brackets was found from the second and third maxima. 

A C 2 7 A  - 2 
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Since Watanabe (1964) used a two-beam theory in 
interpreting the thickness fringes, this approximation 
must be used to find values of Lu0] from the fringes of 
Fig. 4(a) and (b), which represent the elastic plus the 
first plasmon loss intensity. The standard method used, 
as described in I, yields a value for each pair of maxima 
in the fringes. Table 2 shows values of [/z0] calculated in 
this way, together with those for P0, which have been 
taken from I. 

The theoretical values found from the first and sec- 
ond peaks in the fringes are lower than those found 
from the second and third peaks, for both bright and 
dark fields. This is expected, since the relative intensity 
of higher order plasmon losses, which will also contrib- 
ute to the thickness fringes, increases with increasing 
thickness. Therefore, considering the theoretical values 
of Lu0] measured from low thickness, the percentage de- 
crease relative to the P0 values is seen to be comparable 
with the experimental decrease. The agreement is not 
exact, since some multiple PDS is present, and it was 
assumed above that no other inelastic process contri- 
butes significantly to the fringes. Again, the experiment 
is subject to errors, such as chromatic aberration, which 
have been ignored. 

Plasmon path length* 

Ishida, Mannami & Tanaka (1967) measured the path 
length, A, for plasmon excitation for A1 in the (111) 
orientation. They found crystal thicknesses by fitting 
two-beam rocking curves to the bright field rocking 
curve. This gives thicknesses 7 to 8 % too high, as is 
approximately the case if thickness fringes are used, 
and this appears as a systematic error in their deter- 
mination of A. Correcting their measured value of A for 
this effect, the experimental value at 50 kV becomes 
930 A~, in reasonably good agreement with the theore- 
tical value of 841 A. 

Ishida, Mannami & Tanaka (1967) and also Tono- 
mura & Watanabe (1967), found that A for the bright 
field from A1 was greater for negative than for positive 
values of the two-beam deviation parameter, x. The 
former authors interpreted this as being due to an ano- 
malous absorption coefficient for PDS, A/z, using two- 
beam theory. Using the relation 

All ~- - -  A A I A  z 

where A A  is the anomaly in the path length, their ex- 
perimental value was equivalent to A /z=-0 .1  x 10 -3 
A -1. The minus sign implies that the Bloch wave on the 
second branch of the two-beam dispersion surface is 
preferentially transmitted. Ohtsuki (1968) pointed out 
that the plasmon will polarize the lattice, causing a de- 

* N o t e  a d d e d  in p r o o f :  J. C. H. Spenee (private communica-  
tion) pointed out  that  the sign convent ion for A/~ used here, 
and also implicitly used by Ishida, Mannami  Tanaka,  should 
be reversed. The present conclusions concerning the Kikuchi  
band remain valid, though the effect discussed by Ohtsuki  
would oppose rather  than  enhance the observed asymmetry.  

crease in the thermal and single electron contributions 
to the absorption coefficients. Thus when A is deter- 
mined by taking for example the ratio of the elastic to 
the first plasmon loss intensities, Io(x) and I , (x )  respec- 
tively, the asymmetry appears, since the plasmon- 
phonon and, to a lesser extent, the plasmon-single elec- 
tron coupling cause a lower value of Ph to operate on 
It(x).  
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Fig.4. The first order PDS integrated over the objective aper- 
ture is shown as a function of thickness by the full lines in 
(a) and (b), which are for the central and (111) beams respec- 
tively. These are for 40 kV and an aperture size corresponding 
to Pmax=0"18, for the (111) reflexion satisfied. The dashed 
lines are the corresponding thickness fringes for the Bragg 
beams. The sums of these two intensities are denoted  by 
dot ted lines. All intensities are expressed as probabilities. 
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However, as emphasized by Tonomura & Watanabe 
(1967), the (l 1 l) Kikuchi band passes across the ob- 
jective aperture as the crystal is tilted. This effect is in- 
cluded in the present calculations. Fig. 5 shows the 
ratio Io/I~ calculated as a function of x for the bright 
field, for several crystal thicknesses. The accelerating 
voltage is 50 kV, and Pmax was taken as 0.49 to include 
the whole of the first plasmon loss around the central 
beam. Following Ishida, Mannami & Tanaka, an esti- 
mate of the value of ACt implied by the asymmetry in 
the graphs of Fig. 5 can be found by treating them as 
two-beam rocking curves. Then, the bright field rocking 
curve is given by 

exp(-Ct0z) [ ( Actz ) 
Io(x) = 2(1 + x 2) (1 + 2x 2) cosh V ' i + - ~  

+cos  ( 2rczl/l+X2~g ) 

[{  l,z 11 +2x] /1  +x2 sinh \]/i-+xq]I-=S-FA (13) 

where S and A are the terms in (13) symmetrical and 
antisymmetrical with respect to x. 

It is convenient to define a function C(ACt) given by 

4 - 

-- _ ~  5°IA 

, I 
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Fig. 5. The ratio lo/11 plotted against crystal tilt for several 
thicknesses at 50 kV. The dashed lines are the average values. 

C(ACt)= Adx Io(x)dx . S? x /l:m':: (14) 

The value taken for Xmax is 2-58, which corresponds to 
satisfying the (222) reflexion at 50 kV. Values of C can 
be found from the graphs of Fig. 5, since the appro- 
priate normalization [corresponding to the bottom line 
of (14)], is readily obtainable. Thus by calculating 
C(ACt) numerically using (14), ACt can be found for each 
thickness, and these are listed in Table 3. 

Table 3. Values of ACt due to the path 
length anomaly* 

Thickness (A) #( x 10 -3 A-l) 
250 0.22 
500 0.38 
750 0.26 

1,000 0.44 

* The large spread of values raises the question of the validity 
of interpreting the anomaly  as due to a value for Ap. Unfor-  
tunately, the length of the calculation of  rocking curves for 
diffuse scattering prevents a detailed study of  the variation of  
AI., with thickness. 

The values of ACt in Table 3 are positive. This is be- 
cause Ii(x) involves an integration over the aperture, 
or equivalently, over a range of tilts with suitable 
weighting factors. Thus Ii(x) cannot completely follow 
fluctuations in the Bragg beam with tilt. For example, 
when both Io(x) and Ii(x) are low near x = 0 for 250 A 
(Fig. 6), Io/I1 in Fig. 5 is also low. The gross effect in 
Io(x) is the asymmetry about x = 0 .  Since Ix(x) is unable 
to follow this completely, Io/I1 is in general greater for 
positive than for negative values of x, so that ACt is 
positive. Since the rocking curve asymmetry increases 
with thickness, ACt is also expected to increase. This can 
be seen in Table 3, though there is a wide spread of 
values. 

Ishida, Mannami & Tanaka measured an asymmetry 
opposite to that in Fig. 5, which became less apparent 
with increasing thickness, as would be expected from 
the preceding argument. The asymmetry implies, bar- 
ring systematic experimental errors, that there is an 
additional effect such as that suggested by Ohtsuki 
(1968), which not only introduces asymmetry in A(x), 
but is strong enough to reverse it. Taking the average 
value of ACt from Table 3, such an effect corresponds 
to A C t = ( - 0 . 3 - 0 . 1 ) x  10 -3-=- - 0 . 4  x 10 -3 A -1, i.e. it is 
about four times stronger than measured by the above 
authors. The contribution to ACt from plasmon-phonon 
coupling estimated by Ohtsuki (1968) was - 0 . 0 4 4 x  
10 -3 A -1. Further theoretical investigation of this effect 
may therefore prove fruitful. It may, for example, be 
partially responsible for the disappearance of thermal 
streak patterns from the 16 eV loss pattern from Ge, as 
observed by Watanabe (1964). 

As we have seen, the difficulty in measuring ACt is 
caused by partially averaging over tilt for Ii(x), but not 
for Io(x). Unless lengthy calculations of the type de- 

A C 27A - 2* 
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scribed here are performed, meaningful values of ACt 
may not be obtainable by the experimental methods 
used by the authors listed above. Indeed, an accurate 
correction for the influence of the Kikuchi band may 
require as well further consideration of the resonance 
effects discussed in an earlier section, since these are 
dependent on crystal tilt. 

Conclusions 

The principal conclusions drawn above are listed below. 
(1) The total first plasmon loss intensity for low 

thickness is proportional to z, in agreement with the 
Poisson distribution. This is also true for PDS around 
the central beam, but the first order loss near other 
beams is initially proportional to z 3. 

(2) The PDS forms Kikuchi bands, in particular the 
(111) band from A1, which appears when the (111) re- 
flexion is satisfied as a characteristic decrease of diffuse 
intensity between the two strong beams. This effect be- 
comes more marked with increasing thickness, and is 
caused by the Bormann effect acting on the diffuse 
scattering. 

(3) Plasmon scattering forms thickness fringes which, 
except at low thickness, closely resemble those for 
Brags beams. The different behaviour at low thickness 
can be understood qualitatively, and is in agreement 
with experiment. 

(4) PDS offers a reasonable account of the decrease 
in the measured value of the mean absorption coeffi- 
cient, as determined for example by Watanabe (1964), 
when energy filtering is removed. 

(5) The theoretical path length of 841 A calculated 
here for plasmon excitation by 50 kV electrons in A1 is 
in reasonably good agreement with that measured 
by Ishida, Mannami & Tanaka (1967), which, when 
corrected for the effect of weak systematic beams, is 
930 X. 

(6) The passage of the (11 l) Kikuchi band across the 
objective aperture as the crystal is tilted tends to mask 
rather than cause the plasmon path length anomaly ob- 
served by Tonomura & Watanabe (1967) and by Ishida, 
Mannami & Tanaka (1967). The present calculation, 
though ignoring the resonance effects discussed which 
could have a significant bearing in this case, suggests 
that the anomaly is about four times greater than found 
by the above authors. This exceeds by almost an order 
of magnitude the plasmon-phonon contribution as es- 
timated by Ohtsuki (1968). 

The author is indebted to Dr P. S. Turner for per- 
mission to build on his computer program dealing with 
Bragg beam calculation, and to Professor J. M. Cowley 
and C. J. Ryan for several helpful discussions. This 
work was partially supported by a grant from the Au- 
stralian Research Grants Committee. 
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Fig.6. First order PDS (full line) and Bragg beam (dashed 
line) rocking curves for bright field at 250/~ thickness and 
50 kV. The intensities are expressed as probabilities, though 
the Brags beam curve has been decreased by a factor of three 
to allow a ready comparison. 
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